
【机器学习】拟合优度度量和梯度下降(红酒数据集的线性回归模型sklearn&Ridge)
岭回归(Ridge Regression)是种改良的最小二乘法,其通过放弃最小二乘法的无偏性,以损失部分信息为代价来寻找效果稍差但回归系数更符合实际情况的模型方程该模型求解的回归模型的损失函数为线性最小二乘函数,正则化采用L2-范数。在给定样本中,TSS不变,如果实际观测点离样本回归线越近, 则ESS在TSS中占的比重越大, 因此拟合优度:回归平方和ESS/Y的总离差TSS。是样本回归拟合值与观测值的平均值之差,可认为是由回归直线解释的部分。是实际观测值与回归拟合值之差,是回归直线不能解释的部分。